

1

GPS Synchronized Rubidium

Time and Frequency

9/20/2007

Global Positioning System (GPS)

GPS Principles

Time and Frequency

9/20/2007

GPS

GPS can provide global, all-weather, 24-hour, real-time, accurate navigation and time reference to an unlimited number of users.

• GPS Accuracies (2 σ)

Position:	120 m for Standard Positioning Service, SPS
	40 m for Precise Positioning Service, PPS
	1 cm + 1ppm for differential, static land survey
Velocity:	0.3 m/s (SPS), 0.1 m/s (PPS).
Time:	<u>350 ns to < 10 ns</u>

- 24 satellites in 6 orbital planes; 6 to 10 visible at all times; ~12 h period 20,200 km orbits.
- Pseudorandom noise (PRN) navigation signals are broadcast at L1 = 1.575 GHz (19 cm) and L2 = 1.228 GHz (24 cm); two codes, C/A and P are sent; messages provide satellite position, time, and atmospheric propagation data; receivers select the optimum 4 (or more) satellites to track. PPS (for DoD users) uses L1 and L2, SPS uses L1 only.

GPS-Rb Allan Deviation

For times shorter than the Loop Time Constant the stability follows the Rubidium For times longer than the Loop Time Constant the stability follows the GPS

Time and Frequency

GPS-Rb PLL Diagram

9/20/2007

Why Use GPS-Rb?

- Performance Comparable to a Cesium for tenth of the price
- Low dependency on GPS reception
- Long Hold Over: 1 μ s for 24 hours

Rb-GPS Performance Graphs

Time Error AR-73A vs AR-73A

Time difference between two AR73A unit

