Okayama University Research: New Device for Assisting Accurate Hemodialysis Catheter Placement

OKAYAMA, Japan, August 10, 2018 /PRNewswire/ --

Researchers at Okayama University report in The Journal of Vascular Access a supporting device for accurately placing hemodialysis catheters on kidney patients. The device was successfully used on a group of 10 patients and is expected to become an essential tool in situations where other, catheter-free hemodialysis approaches are not possible.

(Photo: https://mma.prnewswire.com/media/729185/Okayama_University_TCC.jpg )

Patients with improperly functioning kidneys often need to undergo hemodialysis - the procedure of purifying blood in an artificial kidney outside the body - on a regular basis. Hemodialysis requires access to blood vessels, for the collection of blood and its re-introduction after purification. In this context, vascular access is commonly achieved with a so-called tunneled cuffed catheter (TCC). Accurate TCC placement is important; incorrect positioning can lead to blood clots and induce central vein thrombosis. Assistant Professor Toshiaki Ohara from Okayama University and colleagues have now developed a device enabling accurate TCC placement. The researchers' insertion support device accommodates for individual body shape differences and is expected to decrease the rate of TCC replacements - typically ranging between 8.9% and 56%.

The device was made from a material called expanded polytetrafluoroethylene (ePTFE), having the property of maintained plasticity. It can be described as a bendable ribbon with holes (eyelets) spaced 1 cm apart; the holes allow making markings on the patient's body with a felt-tip pen.

The insertion support device was tested on 10 Japanese adult hemodialysis patients (6 men and 4 women with a mean age of 71.3 years) treated at Shigei Medical Research Hospital. Placement of the device on the body took place with the help of X-ray imaging: the tip of the device, for marking the TCC entry site, was laid so that it overlaps with the right heart border. With the help of the markings made on the patient's body, the physician could insert the TCC within an error of about 1 cm. The patients were observed for 2 months, during which there was no catheter replacement needed.

The device of Dr. Ohara and colleagues helps to reduce catheter waste and the overall cost of hemodialysis. In addition, as the attachment of a catheter requires exposure to X-rays, it reduces accumulated radiation doses for both patients and physicians. Although the study was only carried out for 10 patients in a short observation period, the scientists 'anticipate that this new device can be used for catheter intervention in many fields'.

Background

Hemodialysis

Hemodialysis, also known as kidney dialysis or just dialysis, refers to the purification of the blood of a person with malfunctioning kidneys. In hemodialysis, blood is extracted from the body, purified from waste substances such as creatinine and urea, and re-introduced into the blood circulation system.

For blood extraction and re-introduction, access to blood vessels is required. Vascular access is typically realized by an arteriovenous fistula (AVF), an arteriovenous graft (AVG) or a tunneled cuffed catheter (TCC). Access through AVF or AVG - both involve surgically created passageways between an artery and a vein - are generally preferred, because of better prevention of infection. Some patients cannot undergo AVF or AVG, however, because of heart failure or low cardiac reserve (the difference between the heart's pumping rate and its maximum pumping capacity). For these patients, a TCC is the appropriate solution.

Accurate placement of a TCC, crucial for its successful functioning, is difficult because of differences in body shapes. A team of researchers led by Dr. Ohara from Okayama University have now developed a bendable support device that helps placing a TCC on a patient's body - the tool enables making temporary markings on the body, based on which the TCC can be accurately inserted.

Reference

Toshiaki Ohara, Kazufumi Sakurama, Satoshi Hiramatsu, Toshimasa Karai, Toshiaki Sato, Yuta Nishina. New insertion support device assisted the accurate placement of tunnelled cuffed catheter: first experience of 10 cases. The journal of vascular access, 2018 May 1:1129729818771884.

DOI: 10.1177/1129729818771884.

http://journals.sagepub.com/doi/abs/10.1177/1129729818771884?journalCode=jvaa

Reference (Okayama University e-Bulletin & OU-MRU): Assistant Professor Ohara's team

OU-MRU Vol.22 Medical supportive device for hemodialysis catheter puncture [http://www.okayama-u.ac.jp/eng/research_highlights/index_id20.html ]

OU-MRU Vol.50 Iron removal as a potential cancer therapy [http://www.okayama-u.ac.jp/eng/research_highlights/index_id67.html ]

Website: http://www.okayama-u.ac.jp/index_e.html

Okayama Univ. e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin

About Okayama University (YouTube):

https://www.youtube.com/watch?v=iDL1coqPRYI

Okayama University Image Movie (YouTube):

https://www.youtube.com/watch?v=KU3hOIXS5kk

Okayama University Medical Research Updates OU-MRU

Vol.1 Innovative non-invasive 'liquid biopsy' method to capture circulating tumor cells from blood samples for genetic testing [http://www.okayama-u.ac.jp/eng/release/index_id210.html ]

Vol.2 Ensuring a cool recovery from cardiac arrest [http://www.okayama-u.ac.jp/eng/release/index_id248.html ]

Vol.3 Organ regeneration research leaps forward [https://www.okayama-u.ac.jp/eng/release/index_id252.html ]

Vol.4 Cardiac mechanosensitive integrator [http://www.okayama-u.ac.jp/eng/release/index_id261.html ]

Vol.5 Cell injections get to the heart of congenital defects [http://www.okayama-u.ac.jp/eng/release/index_id265.html ]

Vol.6 Fourth key molecule identified in bone development [http://www.okayama-u.ac.jp/eng/release/index_id266.html ]

Vol.7 Anticancer virus solution provides an alternative to surgery [http://www.okayama-u.ac.jp/eng/release/index_id273.html ]

Vol.8 Light-responsive dye stimulates sight in genetically blind patients [http://www.okayama-u.ac.jp/eng/release/index_id275.html ]

Vol.9 Diabetes drug helps towards immunity against cancer [http://www.okayama-u.ac.jp/eng/release/index_id282.html ]

Vol.10 Enzyme-inhibitors treat drug-resistant epilepsy [http://www.okayama-u.ac.jp/eng/release/index_id294.html ]

Vol.11 Compound-protein combination shows promise for arthritis treatment [http://www.okayama-u.ac.jp/eng/release/index_id304.html ]

Vol.12 Molecular features of the circadian clock system in fruit flies [http://www.okayama-u.ac.jp/eng/release/index_id315.html ]

Vol.13 Peptide directs artificial tissue growth [http://www.okayama-u.ac.jp/eng/release/index_id324.html ]

Vol.14 Simplified boron compound may treat brain tumours [http://www.okayama-u.ac.jp/eng/release/index_id328.html ]

Vol.15 Metamaterial absorbers for infrared inspection technologies [http://www.okayama-u.ac.jp/eng/research_highlights/index_id10.html ]

Vol.16 Epigenetics research traces how crickets restore lost limbs [http://www.okayama-u.ac.jp/eng/research_highlights/index_id12.html ]

Vol.17 Cell research shows pathway for suppressing hepatitis B virus [http://www.okayama-u.ac.jp/eng/research_highlights/index_id13.html ]

Vol.18 Therapeutic protein targets liver disease [http://www.okayama-u.ac.jp/eng/research_highlights/index_id15.html ]

Vol.19 Study links signalling protein to osteoarthritis [http://www.okayama-u.ac.jp/eng/research_highlights/index_id17.html ]

Vol.20 Lack of enzyme promotes fatty liver disease in thin patients [http://www.okayama-u.ac.jp/eng/research_highlights/index_id18.html ]

Vol.21 Combined gene transduction and light therapy targets gastric cancer [http://www.okayama-u.ac.jp/eng/research_highlights/index_id19.html ]

Vol.22 Medical supportive device for hemodialysis catheter puncture [http://www.okayama-u.ac.jp/eng/research_highlights/index_id20.html ]

Vol.23 Development of low cost oral inactivated vaccines for dysentery [http://www.okayama-u.ac.jp/eng/research_highlights/index_id25.html ]

Vol.24 Sticky molecules to tackle obesity and diabetes [http://www.okayama-u.ac.jp/eng/research_highlights/index_id26.html ]

Vol.25 Self-administered aroma foot massage may reduce symptoms of anxiety [http://www.okayama-u.ac.jp/eng/research_highlights/index_id31.html ]

Vol.26 Protein for preventing heart failure [http://www.okayama-u.ac.jp/eng/research_highlights/index_id37.html ]

Vol.27 Keeping cells in shape to fight sepsis [http://www.okayama-u.ac.jp/eng/research_highlights/index_id38.html ]

Vol.28 Viral-based therapy for bone cancer [http://www.okayama-u.ac.jp/eng/research_highlights/index_id39.html ]

Vol.29 Photoreactive compound allows protein synthesis control with light [http://www.okayama-u.ac.jp/eng/research_highlights/index_id40.html ]

Vol.30 Cancer stem cells' role in tumor growth revealed [http://www.okayama-u.ac.jp/eng/research_highlights/index_id41.html ]

Vol.31 Prevention of RNA virus replication [http://www.okayama-u.ac.jp/eng/research_highlights/index_id42.html ]

Vol.32 Enzyme target for slowing bladder cancer invasion [http://www.okayama-u.ac.jp/eng/research_highlights/index_id43.html ]

Vol.33 Attacking tumors from the inside [http://www.okayama-u.ac.jp/eng/research_highlights/index_id44.html ]

Vol.34 Novel mouse model for studying pancreatic cancer [http://www.okayama-u.ac.jp/eng/research_highlights/index_id45.html ]

Vol.35 Potential cause of Lafora disease revealed [http://www.okayama-u.ac.jp/eng/research_highlights/index_id46.html ]

Vol.36 Overloading of protein localization triggers cellular defects [http://www.okayama-u.ac.jp/eng/research_highlights/index_id47.html ]

Vol.37 Protein dosage compensation mechanism unravelled [https://www.okayama-u.ac.jp/eng/research_highlights/index_id48.html ]

Vol.38 Bioengineered tooth restoration in a large mammal [http://www.okayama-u.ac.jp/eng/research_highlights/index_id49.html ]

Vol.39 Successful test of retinal prosthesis implanted in rats [http://www.okayama-u.ac.jp/eng/research_highlights/index_id54.html ]

Vol.40 Antibodies prolong seizure latency in epileptic mice [http://www.okayama-u.ac.jp/eng/research_highlights/index_id55.html ]

Vol.41 Inorganic biomaterials for soft-tissue adhesion [http://www.okayama-u.ac.jp/eng/research_highlights/index_id56.html ]

Vol.42 Potential drug for treating chronic pain with few side effects [http://www.okayama-u.ac.jp/eng/research_highlights/index_id57.html ]

Vol.43 Potential origin of cancer-associated cells revealed [http://www.okayama-u.ac.jp/eng/research_highlights/index_id59.html ]

Vol.44 Protection from plant extracts [http://www.okayama-u.ac.jp/eng/research_highlights/index_id60.html ]

Vol.45 Link between biological-clock disturbance and brain dysfunction uncovered [http://www.okayama-u.ac.jp/eng/research_highlights/index_id61.html ]

Vol.46 New method for suppressing lung cancer oncogene [http://www.okayama-u.ac.jp/eng/research_highlights/index_id62.html ]

Vol.47 Candidate genes for eye misalignment identified [http://www.okayama-u.ac.jp/eng/research_highlights/index_id64.html ]

Vol.48 Nanotechnology-based approach to cancer virotherapy [http://www.okayama-u.ac.jp/eng/research_highlights/index_id65.html ]

Vol.49 Cell membrane as material for bone formation [http://www.okayama-u.ac.jp/eng/research_highlights/index_id66.html ]

Vol.50 Iron removal as a potential cancer therapy [http://www.okayama-u.ac.jp/eng/research_highlights/index_id67.html ]

Vol.51 Potential of 3D nanoenvironments for experimental cancer [http://www.okayama-u.ac.jp/eng/research_highlights/index_id68.html ]

Vol.52 A protein found on the surface of cells plays an integral role in tumor growth and sustenance [http://www.okayama-u.ac.jp/eng/research_highlights/index_id69.html ]

Vol.53 Successful implantation and testing of retinal prosthesis in monkey eyes with retinal degeneration [http://www.okayama-u.ac.jp/eng/research_highlights/index_id70.html ]

Vol.54 Measuring ion concentration in solutions for clinical and environmental research [http://www.okayama-u.ac.jp/eng/research_highlights/index_id71.html ]

Vol.55 Diabetic kidney disease: new biomarkers improve the prediction of the renal prognosis [http://www.okayama-u.ac.jp/eng/research_highlights/index_id72.html ]

About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 13,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

Website: http://www.okayama-u.ac.jp/index_e.html

        

        Correspondence to 
        Assistant Professor Toshiaki Ohara, M.D., Ph.D. 
        Department of Pathology & Experimental Medicine, 
        Graduate School of Medicine, Dentistry and Pharmaceutical 
        Sciences, Okayama University, Shikata-cho 2-5-1, Okayama city, 
        Okayama 700-8558, Japan 
        E-mail: t_ohara@cc.okayama-u.ac.jp  

        Further information 
        Okayama University 
        1-1-1 Tsushima-naka, Kita-ku , Okayama 700-8530, Japan 
        Public Relations and Information Strategy 
        E-mail: www-adm@adm.okayama-u.ac.jp 

http://www.okayama-u.ac.jp/user/byouri/pathology-1/TOP.html


    Photo: 
    https://mma.prnewswire.com/media/729185/Okayama_University_TCC.jpg


SOURCE Okayama University