Texas Instruments AWR1843AoP 77/79 GHz Radar Chipset Teardown Analysis 2019 with Physical and Cost Comparison with TI's Own AWR1642 & AWR1243

DUBLIN, Sept. 4, 2019 /PRNewswire/ -- The "Texas Instruments AWR1843AoP 77/79 GHz Radar Chipset" report has been added to ResearchAndMarkets.com's offering.

https://mma.prnewswire.com/media/539438/Research_and_Markets_Logo.jpg

This report reviews the AWR1843AoP, including a complete package and die analysis, cost analysis, and a price estimate for the component. Also included is a physical and cost comparison with TI's own AWR1642, featuring 4 Rx and 2 Tx with an MCU and DSP, and AWR1243, featuring 4 Rx and 3 Tx without an MCU and DSP.

Last year, Texas Instruments (TI) entered the radar chipset market with the first highly-integrated radar sensor chip, the AWR1642. Unlike its competitors, TI chose to integrate more than just a transmitter, receiver and local oscillator on the same System-on-Chip (SoC) by adding a microcontroller unit (MCU) and a digital signal processor (DSP). This year, the company is trying to keep ahead of its competitors by upgrading its previous chip with an integrated Antenna-on-Package (AoP) in the AWR1843AoP.

This makes the AWR1843 the most integrated radar chipset currently available on the market. It features seven channels, four receivers (Rx) and three transmitters (Tx), along with an MCU, a DSP, all on the same chip and antennae. Not surprisingly, this new chipset is extremely compact and advanced compared to its competitors.

With a portfolio that now contains four different chip solutions, TI targets multiple automotive and industrial applications, from ultra-short-range radar detection (USRR) to radar imaging (RI). Also, TI's portfolio ranges from low-power, highly integrated devices to high-performance radar working in the 79 GHz band. TI is seeking to replace 24 GHz devices for short-range applications, for which the market is expected to decrease in 2020 due to upcoming European legal restrictions. Also, having the MCU and the DSP on the same die along with the antennae on top of the package allows TI to drastically reduce the PCB footprint, with an almost 80% space reduction compared to other solutions.

Key Topics Covered:

1. Introduction

2. Overview/Introduction

3. Texas Instruments - Company Profile

4. Radar Chipset - Market Analysis

5. Physical Analysis

    --  Physical Analysis - Methodology
    --  Package Assembly
    --  View and dimensions
    --  Package overview and cross-section
    --  Package opening
    --  Die
    --  View, dimensions and markings
    --  Die overview - VCO, receiver, transmitter
    --  Die process
    --  Cross-section and process characteristics

6. Manufacturing Process Flow

    --  Die Process and Wafer Fabrication Unit
    --  AoP Packaging Process and Fabrication Unit

7. Cost Analysis

    --  Cost Analysis Overview
    --  Yield Hypotheses
    --  Front-end (FE) cost
    --  Wafer and die cost
    --  AoP Packaging Assembly Cost
    --  Component Cost

8. Estimated Price Analysis

9. Physical & Cost Comparison

    --  SiGe vs. RFCMOS - Wafer Cost Comparison
    --  TI mmWave - Technology and Cost Comparison

For more information about this report visit https://www.researchandmarkets.com/r/lg6fn6

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Laura Wood, Senior Manager
press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

View original content:http://www.prnewswire.com/news-releases/texas-instruments-awr1843aop-7779-ghz-radar-chipset-teardown-analysis-2019-with-physical-and-cost-comparison-with-tis-own-awr1642--awr1243-300911575.html

SOURCE Research and Markets